Hypoxia-induced pulmonary hypertension: comparison of soluble epoxide hydrolase deletion vs. inhibition.

نویسندگان

  • Benjamin Keserü
  • Eduardo Barbosa-Sicard
  • Ralph T Schermuly
  • Hiromasa Tanaka
  • Bruce D Hammock
  • Norbert Weissmann
  • Beate Fisslthaler
  • Ingrid Fleming
چکیده

AIMS The C-terminal domain of the soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to their less active diols, while the N-terminal domain demonstrates lipid phosphatase activity. As EETs are potent vasoconstrictors in the pulmonary circulation, we assessed the development of pulmonary hypertension induced by exposure to hypoxia (10% O(2)) for 21 days in wild-type (WT) and sEH(-/-) mice and compared the effects with chronic (4 months) sEH inhibition. METHODS AND RESULTS In isolated lungs from WT mice, acute hypoxic vasoconstriction (HPV) was potentiated by sEH inhibition and attenuated by an EET antagonist. After prolonged hypoxia, the acute HPV and sensitivity to the EET antagonist were increased, but potentiation of vasoconstriction following sEH inhibition was not evident. Chronic hypoxia also stimulated the muscularization of pulmonary arteries and decreased sEH expression in WT mice. In normoxic sEH(-/-) mice, acute HPV and small artery muscularization were greater than that in WT lungs and enhanced muscularization was accompanied with decreased voluntary exercise capacity. Acute HPV in sEH(-/-) mice was insensitive to sEH inhibition but inhibited by the EET antagonist and chronic hypoxia induced an exaggerated pulmonary vascular remodelling. In WT mice, chronic sEH inhibition increased serum EET levels but failed to affect acute HPV, right ventricle weight, pulmonary artery muscularization, or voluntary running distance. In human donor lungs, the sEH was expressed in the wall of pulmonary arteries, however, sEH expression was absent in samples from patients with pulmonary hypertension. CONCLUSION These data suggest that a decrease in sEH expression is intimately linked to pathophysiology of hypoxia-induced pulmonary remodelling and hypertension. However, as sEH inhibitors do not promote the development of pulmonary hypertension it seems likely that the N-terminal lipid phosphatase may play a role in the development of this disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytochrome P450 epoxygenase gene function in hypoxic pulmonary vasoconstriction and pulmonary vascular remodeling.

We assessed pulmonary cytochrome P450 (CYP) epoxygenase expression and activity during hypoxia and explored the effects of modulating epoxygenase activity on pulmonary hypertension. The acute hypoxic vasoconstrictor response was studied in Swiss Webster mice, who express CYP2C29 in their lungs. Animals were pretreated with vehicle, the epoxygenase inhibitor (N-methylsulfonyl-6-[2-propargyloxyph...

متن کامل

Design, Synthesis and Biological Activity of 4,6-disubstituted Pyridin-2(1H)-ones as Novel Inhibitors of Soluble Epoxide Hydrolase

Soluble epoxide hydrolase enzyme is a promising therapeutic target for hypertension, vascular inflammation, pain and some other risk factors of cardiovascular diseases. The most potent sEH inhibitors reported in the literature are urea-based ones which often have poor bioavailability. In this study, in a quest for finding potent inhibitors of soluble epoxide hydrolase, some 4,6-disubstituted py...

متن کامل

Pulmonary Vascular Remodeling Cytochrome P450 Epoxygenase Gene Function in Hypoxic Pulmonary Vasoconstriction

We assessed pulmonary cytochrome P450 (CYP) epoxygenase expression and activity during hypoxia and explored the effects of modulating epoxygenase activity on pulmonary hypertension. The acute hypoxic vasoconstrictor response was studied in Swiss Webster mice, who express CYP2C29 in their lungs. Animals were pretreated with vehicle, the epoxygenase inhibitor (N-methylsulfonyl-6-[2-propargyloxyph...

متن کامل

Design, Synthesis and Biological Activity of 4,6-disubstituted Pyridin-2(1H)-ones as Novel Inhibitors of Soluble Epoxide Hydrolase

Soluble epoxide hydrolase enzyme is a promising therapeutic target for hypertension, vascular inflammation, pain and some other risk factors of cardiovascular diseases. The most potent sEH inhibitors reported in the literature are urea-based ones which often have poor bioavailability. In this study, in a quest for finding potent inhibitors of soluble epoxide hydrolase, some 4,6-disubstituted py...

متن کامل

Inhibition of the soluble epoxide hydrolase attenuates monocrotaline-induced pulmonary hypertension in rats.

OBJECTIVES The soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to their less active dihydroxy derivatives. Because EETs have antiinflammatory properties, we determined whether or not inhibition of sEH attenuates disease development in the monocrotaline model of pulmonary hypertension in rats. METHODS sEH inhibition was achieved using 12-(3-adamantan-1-yl-ureido)-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cardiovascular research

دوره 85 1  شماره 

صفحات  -

تاریخ انتشار 2010